Cost Justifying Ergonomics: Methods and Tips for Calculating ROI

Rick Barker, Principal Solutions Strategist, Ergonomics Jennie Dustin, Managing Consultant and Ergonomics Engineer VelocityEHS

Learning Outcomes

Participants will learn how to:

- Define different ways to cost justify ergonomics
- Understand how leadership uses ROI
- Determine ROI using four different models
 - Injury
 - Human Capital
 - Productivity Improvement
 - Quality Improvement
- Identify different estimator calculators

Agenda

- Introduction to Cost Justification
- Cost Justification Models
 - Injury reduction
 - Human Capital
 - Productivity Improvement
 - Quality Improvement
- Estimation Calculators
- Questions

Cost Justification Overview

Cost Justification

Cost Justification is a broad term that can refer to a wide range in level of detail.

 Cost justification can mean that "the proposed action is the most cost-effective solution to a problem or need that absolutely must be addressed."

Source: https://machinerysafety101.com/2012/06/25/the-probability-problem/

Cost Justification

Two common tools used in cost justification are:

- Cost-benefit analysis (CBA)
- Return on investment (ROI)

Source: https://theconversation.com/supreme-courts-epa-mercury-ruling-is-a-victory-for-common-sense-regulation-44073

$ROI = \frac{Benefits - Cost}{Cost} \times 100$

Cost Justification

Program Level

Job Level

Cost Justification is a Story

Source: https://www.liverpool.ac.uk/centre-for-innovation-in-education/resources/all-resources/digital-storytelling.html

What Does Senior Leadership Value?

- Overall values
- Results from ergonomics and/or EHS

What Does Senior Leadership Measure?

VelocityEHS[®]

Dul J, Bruder R, Buckle P, Carayon P, Falzon P, Marras WS, Wilson JR, van der Doelen B. (2012). A strategy for human factors/ergonomics: developing the discipline and profession. Ergonomics. 2012;55(4):377-95.

BENEFITS & IMPACT OF ERGONOMICS

WELL-BEING

Absenteeism

14 © Copyright 2021, VelocityEHS. Do not distribute without authorized consent.

Injury Costs

Injury Costs

- Relying on injury costs is complicated
- Average cost of injury
 - Misleading if you don't include likelihood
- Historical injury costs
- Indirect costs

Using Injury Cost Data

Pros

✓ The <u>primary reason</u> the company has an ergonomics process is likely related to <u>injury reduction</u>.

✓ Injury cost data is readily available.

 More useful for overall program justification.

Cons

- X Emphasizes a **reactive process.**
- Many ergonomics improvements <u>can't</u>
 <u>be justified in < 3 years</u> using only injury cost data.
- Injury data has a <u>high degree of</u>
 <u>variability</u>
- Reinforces the idea that injury reduction is the only benefit of ergonomics.

Average Injury Cost Example

The average cost of an injury is **\$38,000**. The total cost of purchasing and installing two lift tables is **\$19,000**.

CBA 1: \$38,000/\$19,000 = **2.0**

CBA 2: \$38,000-\$19,000 = **\$19,000**

Simple ROI: (\$38,000-\$19,000)/\$19,000 = **100%**

The results look good. Are there any challenges with this approach?

Actual/Historical Injury Cost Example

The average cost of injuries at this station have been **\$9,500/year** over the last 5 years. The total cost of purchasing and installing two lift tables is **\$19,000**.

1-Year Results	3-Year Results
CBA1: \$9,500/\$19,000 = 0.5	CBA1: \$28,500/\$19,000 = 1.5
CBA2: \$9,500 - \$19,000 = -\$9,500	CBA2: \$28,500 - \$19,000 = \$9,500
Simple ROI: (\$9,500-\$19,000)/\$19,000 = -50%	Simple ROI: (\$28,500-\$19,000)/\$19,000 = 50% or 16.6% annually

If you justify ergonomics improvements based on historical injury costs, how do you justify a high-risk job which hasn't had a previous injury?

Indirect Costs

Indirect Costs

Quantifying Indirect Costs

- You may need to establish credibility if challenged.
- Breaking down the details:
 - Initial injury report cost
 - Investigation cost
 - Ongoing reporting cost
 - Government
 - Insurance
 - Site Meetings
 - Corporate Meetings
 - Case management
 - Legal costs
 - Production delays
 - Temporary labor/overtime
 - Training

Injury Reporting Costs

Initial Report of Injury						
Who is Involved?	Time Required	Fully Burdened Wage	Total Wage Cost			
Injured Employee	0.5 Hours	\$24/Hour	\$12			
Supervisor	2 Hours	\$37/Hour	\$74			
Witness(es)	1 Hour	\$24/Hour	\$24			
Plant Nurse	1 Hour	\$60/Hour	\$60			
Safety Manager	1.5 Hours	1.5 Hours \$60/Hour				
			\$260			

Injury Reporting Costs

These have the same initial reporting costs

If you have four initial reports, even with a 3:1 ratio of first aids to recordables:

\$260 x 4 = \$1,040

First Aids

Recordables

Injury Reporting Costs

Total Costs of Injury Reporting & Management						
Process Step	Total Wage Costs	Other Costs	Total Costs			
Initial Report	\$1,040		\$1,040			
Investigation						
Recordkeeping & Reporting						
Case Management Documentation						

\$6,000

Additional Indirect Costs

Total Indirect Costs							
Elements	Total Wage Costs	Other Costs	Total Costs				
Injury Reporting	\$6,000	\$0	\$6,000				
Legal Expenses							
Operations Impact							
Equipment Damage							

Human Resources Costs

Human Resource Measures

Turnover: ↓ 23-49%

Absenteeism: 42-116%

Engagement: $\uparrow \uparrow \uparrow$

Turnover Reduction

Turnover in the department with the highest MSD risk is between 3x and 4x all other departments. Median length of employment is 6 months. HR estimates turnover costs (recruitment + training time) as \$3,500/person. Ergonomics improvements to a workstation will improve working conditions and are expected to reduce turnover to plantwide average, saving an estimated \$7,000/year in turnover costs. The total cost of these improvements is \$10,000/year.

1 Year Results	3 Year Results
CBA1: $$7,000/$10,000 = 0.7$ CBA2: $$7,000 - $10,000 = -$3,000$	CBA1: $$21,000/$10,000 = 2.1$ CBA2: $$21,000 - $10,000 = 11 Simple POI: (\$21,000 \$10,000 = \$11
Simple ROI: $($7,000-$10,000)/$10,000 = -30\%$	Simple ROI: $($21,000-$10,000)/$10,000 = 110\%$ or 36.7%/year

Dul J, Bruder R, Buckle P, Carayon P, Falzon P, Marras WS, Wilson JR, van der Doelen B. (2012). A strategy for human factors/ergonomics: developing the discipline and profession. Ergonomics. 2012;55(4):377-95.

BENEFITS & IMPACT OF ERGONOMICS

BUSINESS PERFORMANCE

Stock Market Value

Sustainability

Productivity

Quality

Employee

Employee Engagement

3 © Copyright 2021, VelocityEHS. Do not distribute without authorized consent.

Improved Manufacturing Performance

Participatory ergonomic intervention shows statistically significant improvements in performance outcomes:

Increase first-time quality production

5% Increase productivity efficiency

Tompa E, Dolinschi R, Natale J. (2013). Economic evaluation of a participatory ergonomics intervention in a textile plant. Appl Ergon. 2013 May;44(3):480-7.

1%

Productivity Benefits

Using Productivity Data

- Hard to accomplish without support for industrial/manufacturing engineering
- Worth pursuing. The largest financial impact of ergonomics is on productivity
- The easiest aspect to quantify is eliminating a task
- Reducing the time to complete a specific task within a job requires the most effort to document improvement

https://www.npr.org/2021/07/07/1013432190/u-s-job-openings-remain-at-historic-high-giving-jobseekers-options

Productivity Data Needed

Productivity Savings					
Elements	Source	Total Costs			
Time Saved/Part	Time Study (direct) Pre-determined Motion Times	3.7 Seconds/Part			
Parts/Year (Parts/Hour or Parts/Day)	Actual Production Volumes Account for multiple stations & shifts	385,000 Parts/Year			
Hours Saved/Year	Time/Part * Parts/Year	395 Hours/Year			
Fully Loaded Wage Cost	Human Resources IEs usually have this too	\$33/Hour			
		~\$13,000/Year			

Productivity Improvement

Installing a **\$10,000** lift table with a rotating top is expected to save 3.7 seconds per part due to reduced walking and reaching. This saves **\$13,000**/year across all 3 shifts.

CBA1: \$13,000/\$10,000 = **1.3**

CBA2: \$13,000-\$10,000 = **\$3,000**

Simple ROI: (\$13,000-\$10,000)/\$10,000 = **30%**

The results look good. Are there any challenges with this approach?

Using Productivity Data

Pros

- Productivity gains generally provide more X Productivity-based justifications typically economic value than safety gains.
- ✓ Standard processes and values already exist in most organizations.
- have more stringent ROI requirements than safety-based justifications.

Cons

X Relying too heavily on productivity gains in the justification process may result in departures from the overall goal of the ergonomics process.

Other Productivity Measures

https://www.hawkeyecollege.edu/programs/industrial-automation-technology

- May be measured as labor cost savings
- Often measured as production profit gain (how many more parts produced during that time x gross profit/part)

Quality Benefits

Quality Costs

https://pixabay.com/photos/car-rain-copenhagen-wet-weather-2648563/

High forces to insert weather stripping

Lack of tactile feedback

Employees use mallet to seat weather stripping

257 quality claims x \$52/claim = **\$13,364**

Positive Experience = Tell **10** People

https://www.publicdomainpictures.net/en/view-image.php?image=5520&picture=thumbs-up

Negative Experience = Tell **40** People

https://technofaq.org/posts/2015/10/6-different-ways-of-dealing-with-diffuse-and-angry-customers-in-a-bpo-industry/

Quality Measures

quality failure rates

cost to correct errors

Using Quality Data

	Pros		Cons
 ✓ You are present <u>language</u> that business object 	enting benefits in a business at is aligned with important ectives.	×	This can be <u>difficult data to obtain</u> accurate costing information directly attributable to poor ergonomics.
 ✓ There are <u>su</u> as well as int from improve 	<u>bstantial financial benefits</u> , angible business benefits, ed quality.		

Using Quality Data

0	

One of the hardest sets of data to include.

Data from Quality may not be detailed in a manner that can be easily applied to safety or ergonomics.

If the Quality Manager doesn't understand safety/ergonomics, getting the right information is challenging.

Ideal data is general cause x workstation. For example, 55% of rework from station 3 is attributed to operator errors/human factors.

Can be challenging to link realistic operator/production process causes to MSD risk levels.

https://www.deviantart.com/magicsnowflake/art/Boot-sole-253399634

Estimators

Is Using an Estimator Valid?

Every cost justification is an estimation of the benefits.

Standardized estimations based on industry averages is often more accurate than individual estimations on each project.

A simple, standardized approach can efficiently accomplish one of the goals of cost justification: "Are we selecting the most effective approach?"

A request for more information isn't a negative outcome.

OSHA Safety Pays Estimator

4. Select "Add/Calculate" to 5. Repeat the step to add a	ries (leave blank t compute the tota	o use default of o al direct and indire	ne). ect costs.					
o, repeat the step to add a njury Type r Vorkers' Compensation C inter Profit Margin (%) (/e inter Number of Injuries Ising default 3% Profit M Add/Calculate	icosts (annual sun ave blank to use t leave blank to use argin	o dire list. h of costs) default of 3%) e default of one)			Select an Injury Type	OR	✓	
stimated Total Cost		ect costs depend	s on the nature of t	he employer's wo	rkers' compensation insurance	ce policy. The employe	er always pays the	indirect

Totals	
Estimated Direct Costs:	\$ 30,930
Estimated Indirect Costs:	\$ 34,023
Combined Total (Direct and Indirect Costs):	\$ 64,953
Sales To Cover Indirect Costs:	\$ 1,134,100
Sales To Cover Total Costs:	\$ 2,165,100

https://www.osha.gov/safetypays/estimator

OSHA Safety Pays Estimator

Pros	Cons
✓ Well documented research supporting	Focuses on cost, not benefits
 ✓ <u>Standardizes</u> injury cost estimations 	The indirect cost modifier is a significant portion of the savings estimation
✓ <u>Simple</u> data inputs	X Only considers <u>injury costs</u>
✓ Allows some <u>customization</u>	

Washington State Estimator

Number of employees in this job/dept./org.: g ##### per hour Average hourly salary for these employees:

Number of WMSD claims for this job/ dept./ org. per year:

This past year:	Туре В	Back strain	•	Number	2	Typical costs:	\$ 17,446
	Type s	Shoulder strain	•	Number	1		\$ 11,565
	Туре В	Back strain	•	Number			\$ -
	Туре В	Back strain	•	Number			\$ -
	Туре В	Back strain	•	Number			\$ -
						Total costs for year:	\$ 29,011
The year before:	Туре В	Back injury w/ surgery	•	Number	1	Typical costs:	\$ 57,688
	Type <mark>s</mark>	Shoulder strain	•	Number	1		\$ 11,565
	Туре В	Back strain	•	Number			\$ -
	Туре В	Back strain	•	Number			\$ -
	Туре В	Back strain	•	Number			\$ -
						Total costs for year:	\$ 69,253
2 years before:	Туре	Back strain	•	Number		Typical costs:	\$ -
	Туре В	Back strain	•	Number			\$ -
	Туре В	Back strain	•	Number			\$ -
	Туре В	Back strain	•	Number			\$ -
	Туре В	Back strain	•	Number			\$ -
						Total costs for year:	\$ -
Washington State Depart	tment of			Aver	age annua	al WMSD claim costs:	\$ 32,755
	suies				Estimated	annual indirect costs:	\$ 36,030
Puget Sound	Human F	actors					

and Ergonomics Society

https://pshfes.org/cost-calculator

Option 2:	Pallet lift	
Purchase cost:	\$	5,500
Engineering cost:		
Training cost:		
Recurring costs:		
Other costs of change:		
otal cost of intervention:	\$	5,500

- C Eliminates exposure to hazard
- Reduces level of exposure
- exposure

Total (

- C Relies on employee behavior
- No reduction in injuries expected
- High speeds up entire process
- Medium reduces wasted motion
- ─ Low improves comfort/reduces fatione
- O No productivity gains expected

Washington State Estimator

	Pros		Cons
\checkmark	Well documented research supporting the estimator	X	Justifications are <u>heavily dependent on</u> injury history, potentially encouraging a
			reactive ergonomics process
\checkmark	Allows for variations in estimating		
	solution effectiveness	X	The indirect cost modifier is a significant portion of the savings estimation
\checkmark	Standardizes injury cost estimations		
		X	Requires substantial data inputs

Goals for New Estimation Method

- Provides data-driven outputs
- Data is independent of injury history on a specific job
- Utilizes risk levels or scores
- Utilizes conservative financial values
- Minimizes data inputs

VelocityEHS Estimator

Projected Annual Savings Productivity \$1,706 Quality \$2,184 Injury Reduction \$2,113 \$156 Absentessism \$341 Turnover **Total Savings** \$6,500 1 Year Return on 63% Investment

VelocityEHS Estimator

Pros Cons ✓ Minimizes data inputs ✗ No ability to customize to job/site specific situations, outputs are very generic ✓ Allows for variations in effectiveness based on injury type ✗ Minimal supporting detail

- ✓ <u>Uses risk</u> to inform predictions
- ✓ Includes savings other than injury
 reduction

Using an Estimator Linked to a Risk Tool

Using an Estimator Linked to a Risk Tool

	Option 1 Two Person Lift	Option 2 Lift Tables	Option 3 Vacuum Hoist
Anticipated Year 1 Cost	\$6,000	\$10,000	\$25,000
Ongoing Annual Cost	\$6,000	\$0	\$0
Projected Risk Reduction	2 points	5 points	15 points
Projected Annual Savings	\$1,014	\$2,535	\$7,605
CBA1	17%	25%	30%
Breakeven	Never	3.9 Years	3.3 Years

Using an Estimator Linked to a Risk Tool

Pros Cons ✓ Well documented research supporting **X** <u>Relies on averages</u> rather than specific the estimator data. ✓ Minimizes data inputs \checkmark Does not account for significant injury history. ✓ Estimate varies based on effectiveness No ability to customize inputs or of improvement. X assumptions. ✓ **Relies on risk rather than injury** to drive X Use is **limited to one specific risk** estimates promoting a proactive assessment methodology. ergonomics process.

Questions?

Rick Barker rbarker@EHS.com

Jennie Dustin jdustin@EHS.com

VelocityEHS

61 © Copyright 2021, VelocityEHS. Do not distribute without authorized consent